Муниципальное автономное общеобразовательное учреждение «Саранинская средняя общеобразовательная школа»

СОГЛАСОВАНО решением педагогического совета протокол от 27.09.2025г. №1

УТВЕРЖДАЮ Директор _____ А.Е.Дворникова Приказ от 29.08.2025г. №55/22-упр

Рабочая программа курса внеурочной деятельности общеинтеллектуальной направленности «Лаборатория юного физика» для основного общего образования Срок освоения: 1 года (8-10 классы)

(с использованием средств обучения и воспитания центра образования естественно-научной и технологической направленностей «Точка роста»)

Составитель: Изибаев Иван Изиланович, учитель физики

Пояснительная записка

Рабочая программа учебного курса внеурочной деятельности общеинтеллектуальной направленности «Лаборатория юного физика» в 8,9,10 классах разработана в целях формирования у обучающихся представлений о приемах и методах решения расчётных и качественных физических задач при подготовке к сдаче ОГЭ и ЕГЭ по физике, отработки практических навыков проведения физических опытов а также развитие информационной и коммуникативной компетентностей учащихся для решения конкретных практических задач с использованием проектного метода, а также с использованием средств обучения и воспитания центра образования естественно-научной и технологической направленностей «Точка роста».

Рабочая программа рассчитана на 34 ч.

Актуальность программы определена тем, что физика, составляющая сердцевину естественнонаучного образования, и педагогическая система должны способствовать формированию профессионалов. В этой связи, предлагаемая программа по физике курса ««Учебная лаборатория юного физика»» обеспечивает получение образования не только как процесс усвоения системы знаний, умений и компетенций, но и как процесс развития личности.

- 1. Общие цели:
- развитие интереса к физике;
- формирование представлений о приемах и методах решения расчётных и качественных физических задач;
 - -помощь обучающемуся в подготовке к сдаче ОГЭ, ЕГЭ по физике;
- формирование информационной и коммуникативной компетентностей учащихся для решения конкретных практических задач, развитие личностных качеств обучающихся на основе комплексного применения знаний, умений и навыков в решении актуальных проблем.

Данная программа построена в соответствии со школьной программой курса физики, а также в соответствии с кодификатором элементов содержания и требований к уровню подготовки обучающихся и спецификацией контрольных измерительных материалов для проведения единого государственного экзамена по физике.

Образовательные задачи: знакомство с алгоритмом работы над проектом и структурой проекта; со способами формулировки проблемных вопросов; выработка умения - определять цель, ставить задачи, составлять и реализовывать план проекта; формирование навыка оформления письменной части проекта, представления проекта в виде презентации и публичного выступления. Отработка навыков выполнения практических работ с использованием измерительных приборов.

Развивающие задачи: формирование универсальных учебных действий; расширение кругозора; обогащение словарного запаса; развитие творческих способностей; развитие умения анализировать, выделять существенное, грамотно и доказательно излагать материал (в том числе и в письменном виде); самостоятельно применять, анализировать и систематизировать полученные знания; развитие мышления, способности наблюдать и делать выводы.

Воспитательные задачи: способствовать самореализации участников проектного обучения, повышению их личной уверенности; развивать сознание значимости коллективной работы для получения результата; продемонстрировать роль сотрудничества и совместной деятельности в процессе выполнения творческих заданий; вдохновлять учащихся на развитие коммуникабельности.

Программа внеурочной деятельности курса параллельно школьному курсу даёт возможность углублять полученные знания ранее на уроках физики, исследуя изучаемую тему с помощью экспериментального моделирования задач ЕГЭ различного уровня

сложности и решения их, тем самым глубже постигать сущность физических явлений и закономерностей, совершенствовать знание физических законов.

Таким образом, отличительной особенностью курса является разнообразие форм работы: — согласованность курса внеурочной деятельности со школьной программой по физике и программой подготовки к экзамену;

— экспериментальный подход к определению физических законов и закономерностей; — возможность создавать творческие проекты, проводить самостоятельные исследования; — прикладной характер исследований.

По итогам реализации курса проводится итоговое мероприятие «Законы физики в природе и технике» в форме представления и защиты проектов

Основной формой учёта внеурочных достижений обучающихся является выполненный проект.

2. Общая характеристика курса внеурочной деятельности.

Физика является фундаментом естественнонаучного образования, естествознания и научно-технического процесса.

Физика как наука имеет своей предметной областью общие закономерности природы во всем многообразии явлений окружающего нас мира. Характерные для современной науки интеграционные тенденции привели к существенному расширению объекта физического исследования, включая космические явления (астрофизика), явления в недрах Земли и планет (геофизика), некоторые особенности явлений живого мира и свойства живых объектов (биофизика, молекулярная биология), информационные системы (полупроводники, лазерная и криогенная техника как основа ЭВМ). Физика стала теоретической основой современной техники и ее неотъемлемой составной частью. Этим определяются образовательное значение учебного предмета «Физика» и его содержательно-методические структуры:

- Физические методы изучения природы.
- Механика: кинематика, динамика, гидро-аэро-статика и динамика.
- Молекулярная физика. Термодинамика.
- Электростатика. Электродинамика.
- Квантовая физика.

В аспектном плане физика рассматривает пространственно-временные формы существования материи в двух видах — вещества и поля, фундаментальные законы природы и современные физические теории, проблемы методологии естественнонаучного познания.

В объектном плане физика изучает различные уровни организации вещества: микроскопический — элементарный частицы, атом и ядро, молекулы; макроскопический — газ, жидкость, твердое тело, плазма, космические объекты как мегауровень. А также изучаются четыре типа взаимодействий (гравитационное, электромагнитное, сильное, слабое), свойства электромагнитного поля, включая оптические явления, обширная область технического применения физики.

Общими целями, стоящими перед курсом физики, является формирование и развитие у ученика научных знаний и умений, необходимых для понимания явлений и процессов, происходящих в природе, быту, для продолжения образования. Весь курс физики распределен по классам следующим образом:

- в 10 классе изучаются: физика и методы научного познания, механика, молекулярная физика, электродинамика (начало);
- в 11 классе изучаются: электродинамика (окончание), оптика, квантовая физика и элементы астрофизики, методы научного познания.

2. Планируемые результаты освоения курса внеурочной деятельности «Лаборатория юного физика»

В результате изучения курса внеурочной деятельности «Лаборатория юного физика» на уровне основного и среднего общего образования:

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений; использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

 понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

3. Содержание курса внеурочной деятельности «Лаборатория юного физика»

Кинематика (5 ч)

Элементы векторной алгебры. Скалярные и векторные физические величины. Относительность механического движения. Системы отсчёта. Траектория. Путь. Перемещение. Скорость. Ускорение. Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности.

Динамика (5 ч)

Взаимодействие тел. Сила. Масса. Законы динамики Ньютона. Сила тяжести, вес, невесомость. Силы упругости, силы трения. Законы: всемирного тяготения, Гука, трения. Использование законов механики для объяснения движения небесных тел и для развития космических исследований.

Законы сохранения в механике. Статика (6 ч)

Импульс материальной точки и системы. Импульс силы. Закон сохранения импульса. Механическая работа. Мощность. Механическая энергия материальной точки и системы. Закон сохранения механической энергии. Работа силы тяжести и силы упругости.

Равновесие материальной точки и твёрдого тела. Момент силы. Условия равновесия. Равновесие жидкости и газа. Давление.

Молекулярно-кинетическая теория идеального газа (5 ч)

Молекулярно-кинетическая теория (МКТ) строения вещества и её экспериментальные доказательства. Абсолютная температура. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева-Клапейрона. Газовые законы. Агрегатные состояния вещества. Влажность воздуха. Модель строения жидкостей.

Основы термодинамики (4 ч)

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Уравнение теплового баланса. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия и КПД тепловых машин.

Электростатика (4 ч)

Электрические заряды. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряжённость и потенциал электростатического поля. Принцип суперпозиции полей. Проводники и диэлектрики в электрическом поле. Электроёмкость. Конденсатор.

Законы постоянного тока (4ч)

Постоянный электрический ток. Сила тока. Сопротивление. Последовательное и параллельное соединение проводников. Закон Джоуля-Ленца. Электродвижущая сила. Закон Ома для полной цепи.

Электрический ток в различных средах (1 ч)

Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме.

Тематическое планирование курса внеурочной деятельности «Лаборатория юного физика»

		Всего	Форма проведения
№ п/п	Название темы, раздела	часов	занятия
	Кинематика (5 часов)	шсов	Sammin
	Математический аппарат физики		Лекционно-
1		1	практическая
2	Равномерное прямолинейное движение		Лекционно-
		1	практическая
3	Движение с постоянным ускорением		Лекционно-
		1	практическая
4	Определение кинематических характеристик с помощью		Лекционно-
	графиков		практическая
5	Кинематика твёрдого тела		Лекционно-
	<u> </u> Динамика (5 часов)		практическая
	Законы Ньютона.	1	Лекционно-
6	Формулировка проблемы проекта.	1	практическая
	Закон всемирного тяготения.		Лекционно-
7	Анализ проблемы проекта.	1	практическая
	Первая космическая скорость.		Лекционно-
8	Способы разрешения проблемы.	1	практическая
	Силы упругости. Закон Гука. Анализ способов решения		Лекционно-
9	проблемы.	1	практическая
	Силы трения.		Лекционно-
10	Свидетельство достижения цели проекта.	1	практическая
Законы сохранения в механике. Статика (6 часов)			
	Импульс тела. Способы убедиться в достижении цели		Лекционно-
11	проекта.		практическая
11	Работа силы. Мощность.	1	Лекционно-
12	Постановка задач проекта.	1	практическая
12	Кинетическая энергия и её изменение.	1	Лекционно-
13	Разбиение задачи на шаги.	1	практическая
	Закон сохранения механической энергии.		Лекционно-
14	Составление плана деятельности.	1	практическая
	Равновесие твёрдых тел. Планирование деятельности в		Лекционно-
15	рамках текущего проекта.	1	практическая
	Основы гидромеханики. Систематизация собранного		Лекционно-
1.0	материала.		практическая
16	Модомунатур мунотурова тооруя учести чест	(5 veces)	
	Молекулярно-кинетическая теория идеального газа Основные положения МКТ.	(3 yacob)	
17	Методы и способы доказательства.	1	Лекционно- практическая
1/	Основное уравнение молекулярно-кинетической теории.	1	практическая
18	Тезисы и аргументы.	1	
19	Уравнение состояния идеального газа.	1	
	Правила демонстрации.		
L	<u> </u>		

		l	1	
20	Газовые законы. Изопроцессы.	1		
20	Способы опровержения.	1		
	Насыщенный пар. Влажность.	_		
21	Вопросно-ответная процедура.	1		
Основы термодинамики (4 часа)				
22	Внутренняя энергия. Работа. Аргументация и убеждение.	1	Лекционно-	
	Уравнение теплового баланса.		практическая	
	Критерии эффективного публичного выступления.			
23		1		
	Первый закон термодинамики. Разработка плана			
24	выступления.	1		
	КПД тепловых машин.			
25	Разработка плана выступления.	1		
	Электростатика (4 часа)	ı		
	Закон Кулона.		Лекционно-	
26	Разработка плана выступления.	1	практическая	
	Напряжённость.	-	- 1	
27	Заключительная часть выступления.	1		
21		1	-	
20	Энергия электростатического поля.	1		
28	Ваключительная часть выступления.	1	-	
20	Электроёмкость. Конденсатор.			
29	Подведение итогов проекта.	1		
Законы постоянного тока (5 часа)				
	Постоянный ток. Сопротивление.		Лекционно-	
30	Подведение итогов проекта.	1	практическая	
	Закон Ома. Соединения проводников.		1 -	
31	Подведение итогов проекта.	1		
	Работа и мощность тока.		1	
32	Подведение итогов проекта.	1		
	Вакон Ома для полной цепи. Подведение итогов проекта.		1	
33	·	1		
	Протекание тока в различных средах.			
34		1		
	ИТОГО	34		
		JT		